Developing a Low Dimensional Patient Class Profile in Accordance to Their Respiration-Induced Tumor Motion

نویسندگان

  • Rittika Shamsuddin
  • B. Prabhakaran
  • Amit Sawant
چکیده

Tumor location displacement caused by respiration-induced motion reduces the efficacy of radiation therapy. Three medically relevant patterns are often observed in the respirationinduced motion signal: baseline shift, ES-Range shift, and D-Range shift. In this paper, for patients with lower body cancer, we develop class profiles (a low dimensional pattern frequency structure) that characterize them in terms of these three medically relevant patterns. We propose an adaptive segmentation technique that turns each respiration-induced motion signal into a multi-set of segments based on persistent variations within the signal. These multi-sets of segments is then probed for base behaviors. These base behaviors are then used to develop the group/class profiles using a modified version of the clustering technique described in [1]. Finally, via quantitative analysis, we provide a medical characterization for the class profiles, which can be used to explore breathing intervention technique. We show that, with i) carefully designed feature sets, ii) the proposed adaptive segmentation technique, iii) the reasonable modifications to an existing clustering algorithm for multi-sets, and iv) the proposed medical characterization methodology, it is possible to reduce the time series respiration-induced motion signals into a compact class profile. One of our co-authors is a medical physician and we used his expert opinion to verify the results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantitative investigation on lung tumor site on its motion tracking in radiotherapy with external surrogates

Introduction: In external beam radiotherapy each effort is done to deliver 3D dose distribution onto the tumor volume uniformly, while minimizing the dose to healthy organs at the same time. Radiation treatment of tumors located at thorax region such as lung and liver has a challenging issue during target localization since these tumors move mainly due to respiration. There are...

متن کامل

Respiratory motion effect on tumor and normal tissue doses in patients with lung cancer, treated with Intensity Modulation Radiation Therapy and Three Dimensional Conformal Radiation Therapy.

Introduction:   The aim of this study is to investigate the effect of respiratory motion during radiation therapy in patient with lung cancer and comparison of dosimetric parameters between Intensity modulation radiation therapy and three-dimensional conformal radiotherapy in lung cancer.   Materials and Methods:   Two CT scan was performred for each pati...

متن کامل

A study on the accuracy of motion tracking of thoracic tumors at radiotherapy with external surrogates

Introduction: In radiotherapy with external surrogates, exact information of tumor position is one of the key factors that improves treatment delivery. Many dynamic tumors in thorax region of patient move mainly due to respiration and are known as intra-fractional motion error that must be compensated, as well. One of clinical strategy is using Stereotactic Body Radiation Thera...

متن کامل

Calculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy

Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...

متن کامل

Respiratory motion correction in prostate cancer positron emission tomography: A study on patients and phantom simulation

Introduction: To investigate the effects of breathing cycle and tree diaphragm motions on prostate cancer tumors standard uptake value (SUV) during positron emission tomography (PET) and to correct it. Materials and methods: Respiratory motion traces were simulated on the common patient breathing cycle and tree diaphragm motio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PVLDB

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017